Regulation of vertebrate corticotropin-releasing factor genes.
نویسندگان
چکیده
Developmental, physiological, and behavioral adjustments in response to environmental change are crucial for animal survival. In vertebrates, the neuroendocrine stress system, comprised of the hypothalamus, pituitary, and adrenal/interrenal glands (HPA/HPI axis) plays a central role in adaptive stress responses. Corticotropin-releasing factor (CRF) is the primary hypothalamic neurohormone regulating the HPA/HPI axis. CRF also functions as a neurotransmitter/neuromodulator in the limbic system and brain stem to coordinate endocrine, behavioral, and autonomic responses to stressors. Glucocorticoids, the end products of the HPA/HPI axis, cause feedback regulation at multiple levels of the stress axis, exerting direct and indirect actions on CRF neurons. The spatial expression patterns of CRF, and stressor-dependent CRF gene activation in the central nervous system (CNS) are evolutionarily conserved. This suggests conservation of the gene regulatory mechanisms that underlie tissue-specific and stressor-dependent CRF expression. Comparative genomic analysis showed that the proximal promoter regions of vertebrate CRF genes are highly conserved. Several cis regulatory elements and trans acting factors have been implicated in stressor-dependent CRF gene activation, including cyclic AMP response element binding protein (CREB), activator protein 1 (AP-1/Fos/Jun), and nerve growth factor induced gene B (NGFI-B). Glucocorticoids, acting through the glucocorticoid and mineralocorticoid receptors, either repress or promote CRF expression depending on physiological state and CNS region. In this review, we take a comparative/evolutionary approach to understand the physiological regulation of CRF gene expression. We also discuss evolutionarily conserved molecular mechanisms that operate at the level of CRF gene transcription.
منابع مشابه
Widespread tissue distribution and diverse functions of corticotropin-releasing factor and related peptides.
Peptides of the corticotropin-releasing factor (CRF) family are expressed throughout the central nervous system (CNS) and in peripheral tissues where they play diverse roles in physiology, behavior, and development. Current data supports the existence of four paralogous genes in vertebrates that encode CRF, urocortin/urotensin 1, urocortin 2 or urocortin 3. Corticotropin-releasing factor is the...
متن کاملStructural and functional conservation of vertebrate corticotropin-releasing factor genes: evidence for a critical role for a conserved cyclic AMP response element.
Corticotropin-releasing factor (CRF) plays a central role in neuroendocrine, autonomic, immune, and behavioral responses to stressors. We analyzed the proximal promoters of two Xenopus laevis CRF genes and found them to be remarkably conserved with mammalian CRF genes. We found several conserved cis elements in the frog CRF genes including a cAMP response element (CRE), activator protein 1 bind...
متن کاملThe remarkable conservation of corticotropin-releasing hormone (CRH)-binding protein in the honeybee (Apis mellifera) dates the CRH system to a common ancestor of insects and vertebrates.
CRH-binding protein (CRH-BP) is a key factor in the regulation of CRH signaling; it modulates the bioactivity and bioavailability of CRH and its related peptides. The conservation of CRH-BP throughout vertebrates was only recently demonstrated. Here we report the presence of CRH-BP in the honeybee (Apis mellifera) and other insects. Honeybee CRH-BP resembles previously characterized vertebrate ...
متن کاملComparative localization of corticotropin and corticotropin releasing factor-like peptides in the brain and hypophysis of a primitive vertebrate, the sturgeon Acipenser ruthenus L.
The sturgeon is a primitive actinopterigian fish that, unlike modern teleosts, possess a portal vascular system that connects a true median eminence with the anterior pituitary as in mammals. The occurrence and localization of corticotropin and corticotropin releasing factor-like immunoreactivies were examined in the brain of the sturgeon (Acipenser ruthenus L.) by immunocytochemistry with anti...
متن کاملRegulatory mechanisms of corticotropin-releasing hormone and vasopressin gene expression in the hypothalamus.
Tuberoinfundibular corticotropin-releasing hormone (CRH) neurones are the principal regulators of the hypothalamic-pituitary-adrenal (HPA)-axis. Vasopressin is primarily a neurohypophysial hormone, produced in magnocellular neurones of the hypothalamic paraventricular and supraoptic nuclei, but parvocellular CRH neurones also coexpress vasopressin, which acts as a second 'releasing factor' for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- General and comparative endocrinology
دوره 153 1-3 شماره
صفحات -
تاریخ انتشار 2007